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Abstract

A simple formulation for the indentation stress–strain behavior of bilayers in contacts with hard spheres is proposed. The formulation
is based on empirical power-law stress–strain relations for each of the individual constituent bulk materials, and thence for the bilayer
coatingrsubstrate composite. For the constituent materials, two regions of response are considered: at low loads, an elastic region, with

Ž . Ž .linear stress–strain response exponents1 ; at high loads, an elastic–plastic region, with nonlinear stress–strain response exponent-1 .
The material responses in each of these two regions are characterized by effective moduli. For the composite bilayer, the transition in
load-bearing capacity from coating to substrate with increasing load is represented by a three-parameter Weibull asymptotic function of
ratio contact radius to coating thickness. This function conveniently defines the geometrical aspects of the contact response separately
from the material properties. The power-law formulation is tested, and the Weibull parameters calibrated, against FEM-generated and
experimental indentation stress–strain data for selected coatingrsubstrate systems with widely different interlayer elastic–plastic
mismatch. The formulation allows a priori predictions of the composite bilayer indentation stress–strain curves from control data on the
constituent materials. Conversely, measurements of indentation stress–strain responses on given bilayers may be used to evaluate
otherwise undeterminable elastic–plastic properties of coatings on well-characterized substrates. q 1998 Elsevier Science S.A. All rights
reserved.
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1. Introduction

Ž .The relationship between contact load P and charac-
Ž . Žteristic contact radius a or, alternatively, contact dis-

Ž ..placement z represents an important material character-
Ž .istic in indentations with spheres of given radius r .

Spherical indenters are widely studied experimentally, be-
cause of their relatively simple geometry; and theoreti-
cally, because of their facility to provide essential informa-
tion on both elastic and plastic deformation properties of

w xthe test material 1 . By defining an indentation stress,
p sPrp a2, and indentation strain, arr, it is possible to0

Ž .generate an indentation function p arr which strikingly0

reflects the intrinsic stress–strain curve for any bulk mate-
rial. Such functions have been routinely measured on

w xhomogeneous bulk materials, including ceramics 1–8 .
The problem becomes considerably more complex in

the indentation of bilayers, where the contact field can be

) Corresponding author.

strongly influenced by elastic–plastic mismatch between
the ‘coating’ and ‘substrate’ materials. Recently, experi-
mental measurements of indentation stress–strain curves
using spherical indenters have been made on a wide

w xvariety of coatingrsubstrate systems 9–16 . The complex-
ities are especially severe when the mismatch in material

Ž .response is large, especially in hard brittle e.g., ceramic
Ž . Žcoatings on soft plastic e.g., metal, polymer substrates or

.vice versa . In such instances the stress–strain response
undergoes a progressive transition, from coating-controlled
at very low loads to substrate-controlled at very high loads.
Detailed computations using finite element modelling
Ž .FEM codes are able to account for such transitions
w x14,17 . However, the practical importance of bilayer sys-
tems makes it desirable to establish some means of repre-

Žsenting the composite stress–strain relation in simple if
.empirical closed form, so that the prospective behavior of

any given bilayer structure may be predicted from the
properties of the two constituent materials without resort to
lengthy numerical computation.
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Accordingly, our objective is to formulate a simple
Ž .p arr relation for bilayer composites so that the role of0

coating thickness and elastic–plastic mismatch as design
parameters may be evaluated. We propose power-law rela-

Ž .tions for p arr , starting with the separate bulk coating0

and substrate materials and leading to an analogous power-
law expression for the composite bilayers. The relations
for the individual materials are linked via an asymptotic
function representing the transition in load-bearing capac-
ity from coating to substrate, somewhat analogous to a

w xfunctional methodology described by Gao et al. 18 . The
bilayer relations are tested against FEM-generated and
experimental indentation stress–strain data for selected
bilayer systems with varying coating thicknesses and
widely different interlayer elastic–plastic mismatch. Poten-
tial use of the formulation to deconvolute properties of
otherwise uncharacterized coatings from indentation mea-
surements on the composite bilayers is discussed.

2. Indentation stress–strain curves for bulk materials

Ž .The indentation stress–strain relation p arr for con-0

tacts with spheres is well defined by the classic Hertzian
theory for ideally elastic, homogeneous bulk materials of

w xYoung’s modulus E and Poisson’s ratio n 19,20 . The
Ž . w xHertzian solution for p arr has the linear form 20

p s 4EXr3p arr 1Ž . Ž . Ž .0

where we define a modified Young’s modulus for the
indenterrspecimen system,

X 2 2E s1r 1yn rEq 1yn rE 2Ž . Ž .Ž .I I

with I referring to the indenter material. The indentation
Ž .stress–strain curve in Eq. 1 reflects the elastic stress–

strain response of the test material, and its uniqueness is
unaffected by the size of the indenting sphere.

Experimental data on monolithic materials confirm that
Ž .p arr is independent of sphere size even when plastic0

Ždamage occurs below the contact ‘geometrical similarity’
w x. Ž .1 . To exploit the general usefulness of this result, Eq. 1
needs to be extended to cover nonlinearity. We propose the
following simple modification:

n
)p s 4E r3p arr 3Ž . Ž . Ž .0

with material parameters E) a nonlinear modulus and n a
Ž .strain-hardening parameter. Eq. 1 is recovered if ns1

)
X Ž . ) Ž X.and E sE . The parameters n F1 and E FE may

Ž .be obtained by curve-fitting numerically e.g., FEM gen-
erated or direct experimental data on any given inelastic
monolithic material.

Generally, it is necessary to assign different values of n
and E) in different regions of the stress–strain curve, to

Ž Ž ..distinguish low-load elastic responses Eq. 1 from high-

Ž .Fig. 1. Contact of a sphere on a coatingrsubstrate bilayer system. a
Ž .Showing key indentation variables. b Showing expansion of idealized

deformation zone with increasing load, i™ ii™ iii™ iÕ. Load sequence
represents transition from coating-controlled response in i to substrate-
controlled response in iÕ. In real bilayers with large elastic–plastic
mismatch the deformation zone may depart significantly from the hemi-
spherical configuration depicted here.

Ž Ž ..load plastic responses Eq. 3 in materials with distinc-
w xtive elastic–plastic regions 21 .

3. Indentation stress–strain curves for composite bilay-
ers

Consider the contact of a bilayer system with a sphere,
as depicted in Fig. 1a. The volumes of influence of the
deformation field are idealized by hemispherical zones
about the contact center. Two factors distinguish the bi-

Ž .layer from the bulk structure: i a configurational factor
drr, representing the coating thickness d in relation to the

Ž . Ž X Xsphere radius r; ii a material factor E rE E rE orc s c s
) ) .E rE representing the coatingrsubstrate elastic–plasticc s

mismatch. It can be foreseen from the idealized deforma-
tion geometry in Fig. 1b that the substrate will have little

Ž .influence on the p arr relation when the contacts are0

small, ard<1; conversely, the substrate will exert a
strong, even dominant influence when the contacts are
large, ard41. The critical questions are: can we define a
universal configurational function to describe the transition
between these two limiting cases?—and how does the
mismatch term E rE enter into this function? Of course,c s

in real bilayers the deformation geometry may depart
substantially from the idealized configuration shown in
Fig. 1, with enhanced damage zone in either the coating or
substrate depending on the mismatch, in which case the
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universality of any derived configurational function is
questionable. However, as we shall see, a reasonably
well-defined function can be determined for a broad range
of material bilayers.

As in the previous section, we begin by first consider-
Ž Ž ..ing elastic contacts cf. Eq. 1 , and then generalizing the

Ž Ž ..treatment to plastic contacts cf. Eq. 3 .

3.1. Fully elastic response

Begin by considering relations for the contact radius a
and load P in terms of the effective elastic modulus EX for

Ž . Ž .the constituent bulk coating c and substrate s materials.
Ž . 2From Eq. 1 , in conjunction with p sPrp a :0

1r3Xa s 3Prr4E 4aŽ . Ž .c c

1r3Xa s 3Prr4E 4bŽ . Ž .s s

Suppose that we write an analogous relation for the com-
Ž .posite coatingrsubstrate bilayer cs :

1r3Xas 3Prr4E 5Ž . Ž .cs

with EX an effective modulus for the bilayer. We cancs
Ž . Ž .expect Eq. 5 to approach Eq. 4a asymptotically at

Ž . Ž .ard<1 low P , and conversely Eq. 4b asymptotically
Ž .at ard41 high P , as indicated schematically in Fig. 2.

In the intermediate region, EX will depend on the mis-cs

match parameter EXrEX and configuration variable ard.c s

Ž . Ž .Fig. 2. Asymptotic behavior of a P in Eq. 5 for bilayer, depicted
Ž . Ž .schematically for a hard coating on soft substrate, b soft coating on

Ž . Ž .hard substrate. Dashed lines are representations of Eqs. 4a and 4b for
the monolithic coating and substrate materials respectively.

In order to evaluate EX we adopt a procedure analo-cs
w xgous in some ways to that used by Gao et al. 18 for

Ž .elastic contacts on bilayers. We rewrite Eq. 5 in the
reduced form

Lr3X Xasa E rE 6Ž . Ž .c c s

Ž . Ž .such that, with Eqs. 4a and 4b , the exponent L defines
a nondimensional configurational function

L ard s ln ara rln a ra 7Ž . Ž . Ž . Ž .c s c

with 0FLF1 in the region 0FardF`. The function
Ž .L ard bears some resemblance to the modulus weighting

Ž . w xfunction ‘fraction coefficient’ defined by Gao et al. 18
although the mathematical context in the present work is

2 Ž .quite different. Along with p sPrp a , Eq. 6 provides0

the indentation stress–strain relation for elastic bilayers:

LX X Xp s 4E r3p E rE arr 8Ž . Ž . Ž . Ž .0 c s c

In this relation the influence of the substrate is seen as a
simple modification of the elastic response for the bulk
coating, with mismatch factor EXrEX and configurationc s

Ž .factor L ard now conveniently separated. This separation
is helpful because it allows us to study the mismatch and

Ž . Ž . Ž .geometry factors independently. From Eqs. 4a , 4b , 5
Ž .and 6 , the effective modulus for the bilayer is

Ž .L ardX X X XE ard sE E rE 9Ž . Ž . Ž .cs c s c

Ž .Note that in the trivial case of zero mismatch in Eq. 9
Ž X X X . Ž . Ž .E sE sE , Eq. 8 reduces to Eq. 1 for the bulkcs c s

Ž . Ž .coating Ls0, ards0 or substrate Ls1, ards` .
This leaves only determination of the configurational

Ž .asymptotic function L ard . We shall return to this issue
in Section 4, after extending the analysis to elastic–plastic
contacts.

3.2. Elastic–plastic response

The analysis for elastic bilayers may be extended to
Ž .cover elastic–plastic bilayers by replacing Eq. 1 with Eq.

Ž .3 . We write separate indentation stress–strain relations
Ž . Ž .for coating c and substrate s :

n
)p s 4E r3p a rr 10aŽ . Ž .Ž .0c c c

m
)p s 4E r3p a rr 10bŽ . Ž .Ž .0s s s

where n and m are plasticity exponents and E) and E)

c s

are effective nonlinear moduli. With p sPrp a2, we0

obtain analogous expressions for the contact radii a in
Ž . Ž .Eqs. 4a and 4b :

Ž .1r nq2n )a s 3Pr r4E 11aŽ .Ž .c c

Ž .1r mq2m )a s 3Pr r4E 11bŽ .Ž .s s
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Ž .Following Eq. 5 , we write an analogous relation for the
Ž .coatingrsubstrate cs bilayer:

Ž .1r Nq2N )as 3Pr r4E 12Ž .Ž .cs

where E) is an effective modulus and N is an effectivecs

exponent in the elastic–plastic region.
Ž . Ž .Presuming the function L ard in Eq. 7 to remain

material-insensitive, the analysis yields a nonlinear stress–
strain relation for bilayers:

Ž .l ny nym l
) ) )p s 4E r3p E rE arr 13Ž . Ž .Ž . Ž .0 c s c

where l is another nondimensional configurational expo-
nent,

l ard s nq2 L ard r mq2 q nym L ardŽ . Ž . Ž . Ž . Ž . Ž .
14Ž .

Ž . Ž .Like L ard , l ard is an asymptotic function, with
Ž .similar limits, i.e., ls0 at Ls0 ards0 and ls1 at

Ž . Ž .Ls1 ards` . Within these limits, l)L 0FardF` .
Again, the influence of the substrate represents a simple
modification of the elastic–plastic response for the bulk
coating, with mismatch factor E)rE ) and configurations c

Ž . Ž . Ž .factor l ard separate entities. From Eqs. 12 and 13 ,
the effective modulus and exponent are determined as

Ž .l ard
) ) ) )E ard sE E rE 15aŽ . Ž .Ž .cs c s c

N ard sny nym l ard 15bŽ . Ž . Ž . Ž .
Ž ) )Note that in the trivial case of zero mismatch E sE scs c

) . Ž .E ; Nsnsm , we have lsL in Eq. 14 , in which cases
Ž . Ž . ŽEq. 13 reduces to Eq. 3 for the bulk coating Ls0,

. Ž .ards0 or substrate Ls1, ards` .
Again, the stress–strain curve is asymptotically deter-

mined by the properties of the coating at small contacts
Ž .ard™0 , and by the properties of the substrate at large

Ž .contacts ard™` . For the special case of identical
Ž Ž .. Ž .exponents msn lsL in Eq. 14 , Eq. 13 reduces to

nL
) ) )p s 4E r3p E rE arr 16Ž . Ž .Ž . Ž .0 c s c

For the even more special case msns1, the elastic
Ž .solution of Eq. 8 is recovered.

4. Empirical calibration of asymptotic configuration
functions

We are now left with determining the asymptotic con-
Ž . Ž .figuration function L ard , and thence l ard , needed for

predicting the response of the bilayer from the elastic–
plastic constants of the individual coating and substrate
materials. We resort here to empirical calibration, using
Ž .p arr data for selected bilayer systems with a wide0

Ž .range of elastic–plastic mismatch: i a relatively hard
Žglass–ceramic coating Dicor, DentsplyrCaulk, Milford,

. ŽDE on a soft glass-filled polymer substrate HCE, Ku-
. w x Ž .raray, Osaka, Japan 22 ; ii a relatively soft porcelain

Ž .coating Vita ZahnFabrik, Bad Sackingen, Germany on a

Fig. 3. Indentation stress–strain curve for Dicor glass–ceramic coatings
on HCE polymer substrates, for coating thicknesses d indicated. Data
points are FEM-generated results, using WC spheres r s3.18 mm for

Ž . Ž . Ž .bilayer data. Solid curves are generated from Eqs. 8 , 10a and 10b .
Bounding curves for Dicor and HCE bulk materials are data fits; interme-
diate curves for bilayer data at prescribed coating thickness d are

Žpredictions. Data courtesy of I.M. Peterson, Y.-G. Jung and S. Wut-
.tiphan.

Žhard glass-infiltrated alumina substrate InCeram, Vita
. w x Ž .ZahnFabrik, Bad Sackingen, Germany 22 ; iii a hard

silicon nitride coating on a softened silicon nitride contain-
Ž .ing 30 vol.% boron nitride platelets Si N rSi N –30BN3 4 3 4

w x16,23 . Data for the first two systems are computer-gener-
ated in stepwise loading using an FEM algorithm for
Hertzian contacts on layer structures, in conjunction with
constitutive relations matching the elastic–plastic proper-

w x Ž .ties of the individual bulk materials 14 Appendix A .
Data for the silicon nitride system are taken from actual

Fig. 4. Indentation stress–strain curve for porcelain coatings on glass-in-
filtrated alumina substrates, for coating thicknesses d indicated. Data
points are FEM-generated results, using WC spheres r s3.18 mm for

Ž . Ž . Ž .bilayer data. Solid curves are generated from Eqs. 8 , 10a and 10b .
Bounding curves for porcelain and alumina bulk materials are data fits;
intermediate curves for bilayer data at prescribed coating thickness d are

Ž .predictions. Data courtesy of I.M. Peterson and S. Wuttiphan.
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Fig. 5. Indentation stress–strain curves for Si N coatings on Si N –303 4 3 4

wt.% BN substrates, for coating thicknesses d indicated. Data points are
experimental results, using WC spheres r s1.98 mm for bilayer data.

Ž . Ž .Solid curves are generated from Eqs. 8 and 13 , in conjunction with
Ž . Ž .Eqs. 14 and 17 . Bounding curves for Si N and Si N –30 wt.% BN3 4 3 4

bulk materials are data fits; intermediate curves for bilayer data at
Ž w x .prescribed coating thickness d are predictions. Data from Ref. 16 .

experimental measurements of contact radii over a range
w xof contact loads 16 . In practice, the coatings in each of

these material systems may be subject to some transverse
Ž .and perhaps also delamination cracking at high loads
w x16,22,23 , limiting the capacity to match experimental
data in the upper regions of the stress–strain curve.

The indentation stress–strain data for the three bilayer
systems are plotted in Figs. 3–5, for a range of coating
thicknesses d, and for tungsten carbide spheres of radius
rs3.18 mm in Figs. 3 and 4 and rs1.98 mm in Fig. 5.
Data for the constituent bulk materials represent upper and

Ž .lower bounds for the bilayer functions. Best fits of Eqs. 1
Ž .and 3 to these bounding data in the elastic and elastic–

plastic regions are shown as dashed curves. We distinguish
the elastic and plastic regions arbitrarily by arrs0.05,

w xcorresponding to a typical indentation strain at yield 1 .
ŽAlternatively, and perhaps preferably, one might distin-
guish the two regions by actual measurements of the
contact pressure p at which yield is first observed experi-Y

w x .mentally 1,24–26 . The best fits to the bulk material data
enable the evaluations of the coating and substrate moduli
Ž X X

) ) . Ž .E and E , E and E and exponents n and m inc s s c

Table 1.

Ž .Fig. 6. Determination of configuration function L ard . Points are from
bilayer data in Figs. 3, 4 and 5. Solid curve is best-fit three-parameter
Weibull function.

With this parametric calibration for the constituent ma-
terials, we then use the bilayer data in Figs. 3–5 to

Ž .Ž .determine L as a function of ards arr rrd , solving
Ž . Ž . Ž . Ž . Žfrom Eq. 8 elastic or Eqs. 13 and 14 elastic–plas-

.tic . The results for the three bilayer systems are plotted in
Ž .Fig. 6. Note that the L ard data for the three systems

overlap each other within the random scatter in data,
suggesting a universal function, although some systematic
shifts are apparent. The data are best-fitted by a three-
parameter Weibull function,

M
L ard s1yexp y AqB ln ard 17Ž . Ž . Ž .� 4
yielding coefficients As0.749, Bs0.173 and Ms4.72.
This best-fit function is plotted as the solid curve in Fig. 6.
Note that the data tend asymptotically to the limits Ls0
at ards0 and Ls1 at ards`, as required.

To illustrate the validity of this fitting procedure, we
Ž .regenerate the indentation stress–strain functions p arr0

Ž . Ž .from Eqs. 8 and 13 for the bilayers as the solid curves
Ž .in Figs. 3–5, using the best-fit function L ard in Eq.

Ž .17 together with the empirically calibrated material pa-
rameters in Table 1. Notwithstanding some systematic
deviations from the data, the regenerated curves account
for the broad trend from coating-controlled to substrate-
controlled behavior as the indentation strain arr in-
creases, and as the coating thickness d diminishes.

Table 1
Ž . Ž . Ž .Elastic–plastic parameters in Eq. 1 for bulk coating c and substrate s materials represented in Figs. 3, 4 and 5

Ž . Ž .Material Elastic modulus GPa Inelastic modulus GPa Inelastic exponent
)Ž . Ž .Glass–ceramic Dicor c E s64.1 E s22.4 ns0.614c c
)Ž . Ž .Polymer HCE s E s23.5 E s11.5 ms0.764s s
)Ž .Porcelain c E s54.8 E s39.7 ns0.852c c
)Ž . Ž .Al O infiltrated s E s218 E s57.6 ms0.5402 3 s s
)Ž .Si N c E s220 E s89.0 ns0.6393 4 c c
)Ž .Si N –30BN s E s113 E s15.0 ms0.3683 4 s s
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5. Discussion

In this study we have presented simple, analytical
Ž .power-law relations for the stress–strain response p arr0

Ž .of elastic–plastic bilayer systems Sections 2 and 3 for
indentations with spheres. The configurational function
Ž .L ard that lies at the core of the analysis has been

evaluated from data on three material bilayer systems, and
fitted with an empirical three-parameter Weibull function
Ž .Section 4 . A feature of the formulation is the mathemati-

Žcal separation of material parameters mismatch modulus
X X

) ) .factors E rE and E rE , exponents n and m fromc s c s
Ž .geometrical parameters ard, or drr , so that the roles of

material and geometrical variables may be assessed inde-
pendently. To make predictions for a given bilayer system
it is still necessary to specify material parameters a prior
for each layer component, or to calibrate these parameters
directly from experimentally measured or FEM-generated
data on monolith controls. The ensuing calculation of the

Ž . Ž . Ž .composite p arr function using Eqs. 8 and 13 is0

more straightforward than conventional numerical analysis.
In this context, the power-law formulation presents itself
as a useful design adjunct for optimizing materials and
geometries for layer structures.

The fact that we can fit a single function to the data in
Fig. 6 for widely different coatingrsubstrate bilayer sys-

Ž .tems suggests a certain universality in our function L ard
for spherical indenters, providing confidence in using the

Ž .analysis in a predictive capacity. Universality in L ard
implies geometrical similarity in the contact field, essen-
tially requiring that the geometry of the damage zones in
Fig. 1b be the same for all material systems. This require-
ment is in fact unlikely to be satisfied for materials with
widely different modulus and hardness properties, espe-
cially in the elastic–plastic regions where yield occurs
preferentially and more extensively in the softer compo-

w xnent 16,23 . Such departures from similarity could ac-
count for the small apparent system-to-system data shifts
in Fig. 6, and thence for some of the discrepancies be-
tween data and predictions in Figs. 3–5. Nevertheless, the
predicted curves do appear to predict the broader data
trends in these figures.

Ž .In principal, one could derive analogous L ard func-
tions for contacts with fixed-profile indenters, e.g., cones

Ž .or pyramids, in terms of the size-invariant hardness
w xvalues of the coating and substrate materials 17 . The

advantage of spherical indenters is that they incorporate
the complete range of elastic and plastic properties within

Ž . w xthe constituent p arr functions 21,25,27 , whereas the0
Žsame functions for fixed-profile indenters at least in the

.loading half-cycle of the indentation contain information
only on the fully plastic state.

In the present work we have chosen bilayers with
coating thicknesses in the range f0.1–1 mm as illustra-

Ž .tive case studies. However, universality in L ard means
that the analysis should apply equally well to microscale

and even nanoscale layers—it is necessary only to scale
the indentation process to suit the scale of the coating. To
establish a rule of thumb for this scaling we write rrds
Ž .Ž .rra ard , and insert the following representative val-

Ž . Ž . Ž .ues: i ards2.77 at Ls0.5 in Eq. 17 Fig. 6 , corre-
sponding to a contact configuration in which the substrate
and coating contribute equally to the load-bearing capac-

Ž .ity; ii arrs0.1, corresponding to the mid-range of
Ž .elastic–plastic deformation Figs. 3–5 . This gives rrdf

25. Hence our use of sphere radius rs1.98 and 3.18 mm
is most appropriate to coatings of thickness df0.1 mm.
Conversely, for ds1 mm and ds1 nm, we would
choose spheres of radius rf25 mm and rf25 nm,
respectively, which is in the range of instrumented nanoin-
denters.

We have used the properties of the constituent bulk
materials to predict the indentation stress–strain response
of composite bilayers. In many coating systems this course
may not always be possible, because of difficulties in
obtaining bulk specimens of the coating material for inde-
pendent evaluation. Moreover, the properties of coatings
may be very different from those of the corresponding

Žbulk material. A striking example is plasma-sprayed coat-
ings, where the moduli may be diminished by more than

w x .an order of magnitude 12 . In this context, a potentially
important application of our simple formulation is to de-
convolute the coating properties from measurements on the
composite bilayers. In principle, one should be able to

Ževaluate all of the coating and substrate parameters mod-
X X

) ) .uli E and E , E and E , exponents n and m byc s s c
Ž . Ž .best-fitting the bilayer data sets to Eqs. 8 and 13 in the

elastic and elastic–plastic regions, in conjunction with Eqs.
Ž . Ž .14 and 17 . In practice, the reliability of any such
evaluation will depend on the availability of a sufficient
quantity of data; and, in the case of the coating, will be
greatly improved if the properties of the substrate are

Fig. 7. Plot of indentation stress–strain curves for Si N coating material.3 4

Data points are experimental measurements from Fig. 5. Solid curves are
Ž . Ž .predictions from Eqs. 1 and 3 using coating parameters deconvoluted

from bilayer data in Fig. 5.
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Fig. 8. Finite element grid for indentation of bilayer of coating thickness
Ž .d with sphere of radius r 3.18 mm .

independently established. As an example, we use the
bilayer data sets for each coating thickness d in Fig. 5 to
determine the parameters for the silicon nitride coating
material, using the substrate parameters listed in Table 1.
With these determinations, we regenerate the coating

Ž .stress–strain functions solid curves shown in Fig. 7, for
comparison with the experimental data points. The correla-
tion between predicted curves and experimental data is
generally well within 10% in stress values, except for the
smallest coating thickness d. The discrepancy in the latter
case confirms that more reliable evaluations of the coating
properties are likely to come from data at larger d.

Our power-law stress–strain formulation, notwithstand-
ing its apparent capacity to predict trends, has acknowl-
edged limitations. We have already alluded to departures
from universal geometrical similarity as one such limita-
tion. Invariably, adoption of empirical power-law functions
provides mathematical expediency at the expense of physi-
cal insight. Such idealized power-law functions are un-
likely to represent fundamental uniaxial stress–strain re-

Žsponses. In fact, in quasi-plastic materials, the underlying
w xelastic–plastic response is probably closer to bilinear 28 ,

Ž .resulting in a nonlinear p arr function different from0
w x . Ž .power-law 21 . We may expect the regenerated p arr0

curves to provide inaccurate representations in the transi-
tion region near the yield point, and at high stresses and

strains as the deformation approaches full plasticity. In
brittle coatings on soft substrates, experimental data points
are expected to fall below the regenerated curves at high
loads, as transverse cracks propagate and reduce the net

w x Žcompliance of the system 13,22 . However, note that
delamination cracks are less likely to influence the results,
since these cracks tend to form predominantly at the end of

w x .unloading 13 . We may further expect the regenerated
curves to be inaccurate in the presence of superposed
residual in-plane coating stresses, e.g., from thermal ex-
pansion mismatch between interlayers, especially for resid-

Ž .ual stresses)1 GPa cf. values of p in Figs. 3–5 . FEM0

simulations are likely to provide more accurate and contin-
uous representations over the data range, especially in the

w xvicinity of the yield point 14,15 , and if due allowance is
also made in the code for the incidence of any transverse

w xcracking 29 .
Finally, it is envisioned that the procedure outlined in

Sections 2 and 3 might equally well be used to derive
Ž .load-displacement P–z relations of the kind measured in

w xinstrumented indentation testing 30,31 .
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Appendix A. Finite element modelling of indentation
stress–strain curves

ŽA commercial FEM package Strand, G&D Comput-
.ing, Sydney, Australia is used to construct an algorithm

w xfor generating the data in Figs. 3 and 4 14,15 . The
algorithm models an indenting sphere of given radius
Ž .rs3.18 mm in frictionless axisymmetric contact on a

Ž .flat cylindrical specimen 4 mm radius and 4 mm thick ,
using the grid shown in Fig. 8. For the bilayer structures,
each material layer is allowed to yield according to a

Table 2
Ž .Material parameters in constitutive relation Eq. A1a for bulk coating and substrate materials represented in Figs. 3 and 4

w x Ž . w x Ž . w xMaterial Young’s modulus E GPa Yield stress Y GPa Strain-hardening coefficient a

Ž .Glass–ceramic Dicor 69.0 1.95 0.40
Ž .Polymer HCE 25.0 0.59 0.75

Porcelain 66.6 1.95 1.00
Ž .Al O infiltrated 252 4.35 0.402 3
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critical shear stress condition, in conjunction with a bilin-
Ž . w xear uniaxial stress–strain function s ´ 25 :

ssE´ , s-Y A1aŽ . Ž .
ssYqa ´ EyY , s)Y A1bŽ . Ž . Ž .
with E Young’s modulus, Y a uniaxial compression yield
stress, and a a dimensionless strain-hardening coefficient
Ž .0FaF1: as1, fully elastic; as0, fully plastic .
Strong interfacial bonding is assumed between the adjacent

Ž .layers in Fig. 8 no delamination . Contact is incremented
monotonically to peak load, with a maximum 50 iterations
at each increment, with a tolerance 0.1% in force and 0.5%
in displacement. At each load P the contact radius a is
determined, from which p sPrp a2 and arr are evalu-0

ated.
In order to generate a priori FEM stress–strain curves

for the bilayers of specified coating thicknesses d in Fig.
Ž . Ž8, the parameters, E, Y and a in Eq. 1 as well as

.Poisson’s ratio-taken here at a common value 0.25 , must
first be specified for each material. In practice, this is most

Ž .readily done by ‘calibration’ against experimental p arr0

data for bulk specimens. The results of such parameter
calibrations for the materials in Figs. 3 and 4 are summa-
rized in Table 2, to be described in more detail elsewhere
w x22 .
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